
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Technical Manual for a UNIX-based

Device-Independent Vector Graphic System

by

Gerald I. Evenden1

Open-File Report 91-2

This report is preliminary and has not been reviewed for conformity with U.S. Geo­
logical Survey editorial standards. Use of tradenames is for purposes of identification
only and does not constitute endorsement by the U.S. Geological Survey.

January 2, 1991

1 Woods Hole, MA

Contents

Abstract 1

Introduction 1
Source Distribution 1

Creating metagraphic data 1
System Coordinates 2
Plot initialization 2
Pen Initialization and Control 3
Select pen 4
Pen Positioning 4
Character String Plotting 5
Symbol Plotting r 7
Line Plotting 7
Symbol Line Plotting 8
Request to Plotter 9

Metagraphic file format 10

Plotter drivers 10
Internal drivers 10
External drivers 13
Installing device drivers 15

Fonts 16
Hershey Drafting System 16
Font structure 17
Typesetting fonts 17

References 18

Appendix A Standard Fonts 19

Appendix B-UNIX Manual Style Documentation 35

Figures

1 Example of basic vector plotting calls 5
2 Example of basic string plotting calls 7
3 Examples of extended line plotting calls 9
4 Stroke pattern for the Hershey Simplex Roman letter A, character 501. 16
5 Stroke pattern for the Hershey Triplex Roman letter A, character 3001. 17

Tables

1 Metagraphic command byte........................ 10
2 External driver communication stream.................. 14
3 Contents of symgen selection file sr .D for making plotter font file

-sr. 19
4 Symbols for font -3osw ^ 20
5 Symbols for Cartographic font (-cartr). 20
6 Symbols for Cyrillic font (-cc). 21
7 Symbols for font (-cgi). 21

111

8 Symbols for font -cip 22
9 Symbols for font -cri 22
10 Symbols for font -crp 23
11 Symbols for font -cscp 23
12 Symbols for font -din 24
13 Symbols for font -dr 24
14 Symbols for font -engl.......................... 25
15 Symbols for font -germ 25
16 Symbols for font -ital.......................... 26
17 Symbols for font -ksyml 26
18 Symbols for font -ksym2 27
19 Symbols for font -osw 27
20 Symbols for font -sg 28
21 Symbols for font -sr 28
22 Symbols for font -sscp 29
23 Symbols for font -syml 29
24 Symbols for font -tr 30
25 Symbols for font -tri 30
26 Symbols for typesetting font -nrR 31
27 Symbols for typesetting font -nrB 31
28 Symbols for typesetting font -nrl.................... 32
29 Symbols for typesetting font -nrBI 32
30 Symbols for typesetting font -nrS 33

Technical Manual for a UNIX-based
Device-Independent Vector Graphic System

Gerald I. Evenden

Abstract

Technical details of a basic device independent vector
graphic system for the UNIX operating system environ­
ment are described. The system uses a metagraphic data
stream created by applications programs employing doc­
umented library procedures. This stream can be either
saved as a file, transported to other computer systems or
immediately interpreted and displayed by program plot­
ter which converts the data to specific graphic commands
required by the selected plotter. Several hard-copy plot­
ters, interactive graphic terminals as well as Xll Windows
are currently supported and emphasis is placed upon de­
tailed description of how additional graphic devices can
be added to the system. Description of the metagraphic
stream and how additional character fonts can be created
are also given as well as tabulations of current standard
character fonts.

Introduction

This is a technical description of a vector graphic sys­
tem for UNIX application programs that is designed to
provide readily adaptable software for a wide variety of
display hardware and thus enhance the transportability
of the application software using it. The system consists
of a library of C functions to be executed by the appli­
cations program that create a device independent meta­
graphic data stream to control a generic vector plotter.
This data stream can be either directly piped to the
program plotter which converts the information to the
commands to operate a specific plotting device or saved
in a file (usually termed a "deferred" or "overlay" file)
for later processing by plotter.

To achieve flexibility, only the most primitive graphic
device is required for making vector plots: a pen capa­
ble of being moved in a "pen up" or nondrafting mode
and moved in a "pen down" or line drawing mode.
Although most plotting hardware provide more facili­
ties which may be accessed by mechanisms within the
system, any metagraphic file can be displayed on any
device suffering only the lack of enhancements of more

sophisticated displays. Character drafting is performed
by the system as well as line smoothing, dashing and
various other features. For interactive graphic devices
a mechanism for obtaining cursor coordinates from the
screen is also provided.

The purpose of this report is to document the C pro­
cedures used by application programs, aspects of vari­
ous system features and a detailed description of how
additional plotting devices can be added to the system.
Details and display of the standard character sets dis­
tributed with the system are tabulated along with in­
structions as to how new ones can be created.

This graphic system is designed to provide public-
domain vector graphic software in support of the
MAPGEN-PLOTGEN system (Evenden and Botbol, 1985)
so that it can be transported without reliance upon
graphic packages that may not be available at new host
sites. Although this system does not represent state
of the art graphic techniques and lacks some features
of more modern graphic packages, it has shown a ro­
bustness and flexibility that has caused it to retain its
usefulness.

Source Distribution

All software discussed in this report may be obtained
from the author. This consists of a file subsystem con­
taining appropriate supplementary "README" and in­
stallation procedures for creating program plotter, the
application library libgraph.a, and the standard fonts
used by plotter. In addition, graphics.h header file,
standard UNIX style manual source files, test programs
and expanded Hershey character definition tables are
included.

Creating metagraphic data

This section is concerned with the programming aspects
of creating a metagraphic stream that will be either
piped directly to program plotter, or saved in over­
lay files for later display. There are eight entries in the
library file libgraph. a for execution by application pro-

CREATING METAGRAPHIC DATA

grams to generate a metagraphic stream and to control
the execution of program plotter:

^include <graphics.h>
int plotopen((char **)argl)
void plotend()
int defopen([(char *)type,] (char *)name)
void delcloseO
void pltllushQ
plot opt((int)opt [, arg])
void pxyxmit((int)opt, (long)x, (long)y)
AHSWR *plotreq((int)opt)

Usage of argument opt is usually by means of acronymic
#defines in the file graphics.h. The argument arg may
not be present for some plotopt calls and, when used,
its type is dependent upon arg: int, long or char *.
Because graphics.h will probably not be in the stan­
dard UNIX system /usr/include directory, the -Ipath
option pointing to an appropriate directory will be re­
quired when compiling application programs. Proce­
dures plotopt, pxyxmit and plotreq are the only en­
tries that generate metagraphic data.

System Coordinates

The system's internal coordinates compose a non-
negative, integral cartesian x-y system with a range
of 0-8,388,607 counts in both axes and coordinates 0-
0 are always at the lower left-hand corner of the plot.
Relationship between these units and the units used by
specific plotting devices are dependent upon scaling per­
formed by plotter's device output procedures and run­
time switches. For consistency of application software
scaling, all hard copy devices distributed with the sys­
tem are considered to have a precision of 200 counts/cm
(50/* resolution) irrespective of their true capabilities
sufficient for most publication applications.

For terminal screen devices, the internal coordinates
are converted directly to the pixel range of the device
(typically in the range of 1,000 counts). A different
scale factor for one axis is required for displays that
do not have a 1:1 aspect ratio. Appropriate scaling of
the metagraphic data on terminal devices can be per­
formed by inquiries to program plotter to determine
the screen size and sending rescaling information prior
to processing the graphic stream.

Because this system is primarily designed for hard-
copy vector output, writers of application software
should scale data to the internal coordinate system
based upon the hardcopy resolution and size of the de­
sired plot. If plots are to be viewed on an interactive
device they can be readily scaled down to fit the maxi­
mum range of the device.

Plot initialization

The following entries to the graphics system pertain
to initialization and non-graphic aspects of the system.
When creating a plot either a direct link with-the pro­
gram plotter can be established by executing plotopen
and/or the metagraphics can be output to a deferred
plot file by executing defopen. If neither opening proce­
dure is called, subsequent calls to the other procedures
are NO-OP's.

Direct link to program plotter

A direct link to program plotter is open and closed
by the respective procedures plotopen and plot end.
Plotopen's argument argl is an array of character
string pointers passing information to program plot­
ter's argv main entry. The size of argl must be at
least three elements and in all cases the first two will be
ignored (they are modified by plotopen) and the last
entry must be null to signify the end of the parame­
ter list. Entries in this list may be any of the options
and parameters recognized by program plotter, includ­
ing overlay file names. Plotopen will return a 0 for a
successful operation, otherwise the linkage failed.

If plotter is to accept data from the parent program
or be used interactively then the pair of arguments "-i"
and " . " must appear sequentially in the argument list.
Otherwise, plotter expects input only from specified
overlay files and plotopen will return after completion
of the spawned process.

Typical usage of these procedures is summarized as:

static char *argl [MAXARG] -{0,0,"-i",".",0};

/* open link with plotter */
if (plotopen(argl)) {

fprintf (stderr, "plotter link f ailure\n") ;

/* successful, do graphics */

plotendO; /* finished with plotter */

where the user-defined value of HAXAR6 is chosen large
enough to provide space in argl for supplementary ar­
guments.

If the plotting device name option (-d) is omitted,
the graphics system assumes that the current control­
ling teletype is a graphics device and selects the device
driver based on the environment setting of 6TERH or,
if not given, TERM. Program plotter inherits the same
status of stdout as the parent program so that if another
output file is to be used by plotter then the -o option
in argl must be used.

Pen Initialization and Control

Deferred plot file control

When a deferred plot file is opened by a call to
del open all metagraphics generated by subsequent calls
to plot opt or pxyxmit are output to this file until it is
closed by def close. As with plotopen, a 0 value will
be returned if the deferred file was successfully opened.
Both plotopen and def open may be used concurrently
to allow monitoring of the creation of a deferred file on
a terminal.

An optional string argument begining with a - may
precede the file name argument where the characters
following the - are the fopen(3) type argument. For
example:

defopen("-a", "myfile");

will append metagraphic data to myf ile if it exists or
create a new file. When the argument is omitted a w
type is assumed which will create or overwrite an exist­
ing file. The hyphen is used as an indicator that this is
the type argument and not the file name.

Flush current contents of buffers

(void)pltflushO;

This call is occasionally required to ensure that the cur­
rent contents of the buffers have been sent to plotter
and/or the overlay file.

Include deferred file

(void)plotopt(INCL, (char *)name);

A previously created deferred plot file is be included in
the current plot.

Clear graphics area

(void)plotopt(ERASE);

This device dependent option will erase the screen of
interactive graphics devices. It is ignored when applied
to hardcopy devices.

Disable graphics mode

(void)plotopt(DISABLE);

Many screen terminals are capable of selectable and
independent text and graphic modes. This operation
returns the terminal to the text mode for interactive
text-keyboard process control. These terminals will au­
tomatically switch to the graphic mode on the receipt
of the next graphic command. It is ignored by hard-
copy devices. Note: this call should be followed by a
pltf lush call.

Reset plot scaling

(void)plotopt(RESCALE, (char *)value);

If no pens are active the basic scaling of the device (see
plotopen) may be changed to the positive value of the
decimal number expressed as a string in value. It is
necessary to format the value in ASCII since the meta­
graphic stream has no provisions for fractional numbers.
Typically this operation is performed immediately after
plotopen and a plotreq(P_SIZE) so that custom scal­
ing can be automatically performed by the application
program.

Reset x-y base register

(void)plotopt(CBASE);

Execution of this option will clear plotter's x-y reg­
isters used to reconstitute the differential x-y data in
the metagraphic stream. Usage of the option applies to
cases where the metagraphic files may be concatenated
by non-graphics software (i.e. a cat(l) command) and
precedes any calls which transmit x-y data.

Offset registers.

(void)plotopt(BASEX, (long)value);
(void)plotopt(BASEY, (long)value);

These offset registers will shift all x-y non-relative co­
ordinate data from the normal 0,0 origin. The user may
alter the axis offsets with the BASEX and BASEY values
which are algebraically added to the respective coordi­
nate data. Normal application of this option(s) is for
zooming operations on metagraphic files.

Special driver control

(void)plotopt(SPECIAL, (char *)str);

The contents of the null terminated character string str
are passed directly to the device driver procedure with­
out interpretation by program plotter. Contents and
meaning of str are determined by device driver docu­
mentation. Use of this call will limit the device inde­
pendence of a metagraphic stream but it allows a great
deal of flexibility for applications needing access to spe­
cial plotter features.

Pen Initialization and Control

Before any plotting operations, line drafting, string or
symbol posting can be done, a pen must be defined.
The unqualified term pen is defined in this report as
a logical entity and not in terms of the true, physical

CREATING METAGRAPHIC DATA

pen on the plotting device. Many pens can be spec­
ified, each with its own attributes which can operate
and perform plotting operations totally independent of
the other pens. The following set of operations provide
for basic pen initialization and setting of non-graphic
attributes.

Initialize pen

(void)plotopt(NEWPEN, (char*)name);

Each pen is given a user defined name of up to 31 char­
acters (more may be used, but the high order characters
are ignored). If desired, an existing pen may be used as
a template to initialize automatically various options by
following the new pen's name in the string with a : and
the name of an existing pen's attributes to be copied to
the new pen's attibutes. For example:

(void)plotopt(NEWPEN, (char*)"penB:penA");

will initialize penB with the current attributes of pen A.

Select pen

(void)plotopt(SPEN, (char *)name);

Any existing pen may be selected by this option. All
subsequent graphics operations now apply to this pen.

Delete current pen

(void)plotopt(DELPEN);

This option removes the currently selected pen. If there
are other active pens then the pen selected before the
current, deleted pen becomes the current pen, but the
user is advised to issue a SPEN after this operation.

Link x-y

(void)plotopt(LINKXY, (char*)name);

The x-y coordinates of the current pen may be linked
to those of another pen selected by name. Several pens
may be linked in this manner. This feature provides
for a variety of line and character attributes assigned to
different pens tracking the same set of x-y coordinates.

Unlink x-y of current pen

(void)plotopt(DELINK);

This option is the inverse of LINKXY so that the coordi­
nates of the current pen are controlled independent of
any other pen.

Window range

(void)plotopt(WXL,
(void)plotopt(WXH,

(long)xlow);
(long)xhi);

(void)plotopt(WYL, (long)ylow);
(void)plotopt(WYH, (long)yhi);

Xlow, xhi, ylow and yhi set the respective boundaries
of the window for all graphics operations of the current
pen. The low value must be less than the respective
axis hi value. Values less than 0 or larger than the size
of the plot device are respectively converted to 0 or the
size of the device. When a pen is initialized without the
attribute copy option the window boundaries are set to
the limits of the device.

Mechanical pen selection

(void)plotopt(MPEN, (long)mpen);

This option is dependent upon the plotting device. For
most devices this option will select different mechanical
pens which may be of varying color and/or line width.
Mpen values less than 256 may be mapped to new values
by plotter runline options.

Pen Positioning

All character, symbol and line drafting is based upon
the x-y positioning of the current pen. This positioning
may be done in two ways: as an absolute position or
as a position relative to the last absolute coordinate
value. In either case, the pen may be moved to the new
coordinates with or without drafting a line.

Plotter pen motion

(void)pxyxmit(_PEHUP, (long)x, (long)y);
(void)pxyxmit(_PENUP+_REL, (long)x, (long)y);
(void)pxyxmit(O, (long)x, (long)y);
(void)pxyxmit(_REL, (long)x, (long)y);

The above entries move the pen to the specified coor­
dinates. If _REL is specified, the x and y coordinates
are relative to the previous pen position. When _PENUP
is specified the pen motion does not cause a line to be
drafted (i.e. a "dark vector"), otherwise the charac­
teristics of the line drafted are defined by the factors
set in the line plotting section. The macros moveto,
relmoveto, lineto and rellineto in the graphics.h
file may be used in lieu of the above respective pxyxmit
calls.

Simple line drafting example

The following listing is an example program showing
basic program initialization and both relative and abso­
lute vector drafting. For creating a display appropriate

Character String Plotting

for this publication the size of the plot will be limited
to the column width of 20 picas (8.47cm) and about
2.5" (6.35cm) high. Since plotter's PostScript driver
expects 200 count/cm coordinates the respective max­
imum x-y data values should be about 1692 and 1280.

3include <graphics.h>
^define XMAX 1692
^define YMAX 1280
^define CM 200
*define T 999999
typedef struct { long x, y; } XY;
/* some objects */

static XY
neatline[] = { 0,0, XMAX.O, O.YMAX, -XMAX,0,

0,-YMAX, 0,0, T,0 },
box[>{-l,-1,2,0,0,2,-2,0,0,-2,1,1,1,0},
triangle[]={-!,-!,2,0,-1,2,-1,-2,1,1,1,0},
diamond[]={0,-2,1,2,-1,2,-1,-2,1,-2,0,2,1,0};

static void /* plot objects */
do_obj(f, size) XY *f; double size; {

relmoveto(f->x * size, f->y * size);
for (++f ; f[l].x != T ; -n-f)

rellineto(f->x * size, f->y * size);
relmoveto(f->x * size, f->y * size);

main(argc, argv) char **argv; {
/* open plot and exit on failure */

if (defopen(argv[l])) perror(argv[l]), exit(l);
plotopt(CBASE);
plotopt(ERASE);
plotopt(NEWPEN,"A");
plotopt(WXH, XMAX);
plotopt(WYH, YMAX);
moveto(0, 0);
do_obj(neatline, 1.)
moveto(310, 310);
do_obj(box, 300.);
do_obj(box, 250.);
do_obj(box, 200.);
moveto(XMAX/2, YMAX/2)
do_obj(box, 50.);

/* force base and
/* clear screen
/* select pen
/* and limit vector
/* range
/* plot a neatline

/* plot some nested
/* boxes

/* move around and
/* plot more boxes

lineto(XMAX*.75, YMAX*.75); /* join with a
/* line
/* plot some other
/* shapes

do_obj(box, 100.);
moveto(100, YMAX*.75);
do_obj(diamond, 100.);
moveto(800, YMAX*.5);
do_obj(triangle, 150.);
moveto(800, YMAX*.9);
do.obj(diamond, 100.);
moveto(.2*XMAX, .2*YMAX); /* simple line
lineto(.8*XMAX, .5*YMAX);
defcloseQ; /* done with plot */

*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/

/* this one will be */
/* clipped */

*/

The overlay created by the above program is displayed
in figure 1.

Figure 1: Example of basic vector plotting calls

Character String Plotting

This graphics system provides a comprehensive set of
character fonts and control to facilitate the generation
of graphics text. However, the programmer must per­
form at least two steps in anticipation of text plotting:
select a font and establish scaling. Remember that all
subsequently described attributes are associated with
only the currently selected pen.

A second factor associated with text plotting is the
net coordinate position where the string will be located.
The pxyxmit command will determine the base position
for the text data but the net position is a function of
XOFF, YOFF and justification selected as additive factors
to the base position.

The actual operation of drafting characters is deter­
mined by the set of vectors contained in the selected
font, and these coordinates will make a tertiary deter­
mination of the character position relative to the net
position selected. Most of the normal text and symbol
characters employed in the supplied fonts will center the
character about the net coordinate selected.

Select primary character font

(void)plotopt(SFOHT, (char *)name);

Before any TEXT strings can be plotted a font must be
selected. A font with a full set of printable ASCII gothic
characters may be selected with - for name. The stan­
dard font library distributed with this system contains
a variety of styles, alphabets and symbols. When se­
lecting fonts from this library the first character in the
name must be a - (eg. -sr). If non-library fonts are
to be employed then the full path name must be spec­
ified. Note: all fonts must have been preformated in

CREATING METAGRAPHIC DATA

accordance with system standards (see the section on
fonts).

Select alternate character font

(vo id)plot opt(SFONTA, (char *)name);

An alternate font may be specified with the SFONTA call.
Characters in this font are selected by means of the
special codes described in TEXT. If the alternate font
has not been established or a character in the string
does not exist in the alternate font, the corresponding
character in the primary font will be drafted.

String plotting

(void)plotopt(TEXT, (char *)str);

The standard C null terminated string str is plotted
at the current pen's x and y coordinates with the at­
tributes ascribed to the pen's character control parame­
ters. If the current x or y coordinates are outside of the
current window then the plotting is suspended. How­
ever, the string may be positioned outside the window
with appropriate XOFF or YOFF values. If any part of a
character of the string is outside the plotting device's
coordinate range the character will not be plotted.

Three TEXT string character values have special mean­
ing and are used for control:

\001 select primary font for all subsequent characters,

\002 select secondary font for all subsequent charac­
ters,

\n terminate the current 'line' and continues the string
with the y offset negatively adjusted. See LEAD for
setting line spacing.

The font selection remains in effect for all subsequent
TEXT calls for currently selected pen. The \n character
only affects the string posted in the current call and
will not change the basic positioning of any subsequent
TEXT calls.

Character size

(void)plotopt(SIZE, (long)size);

The argument size is a multiplier which scales the vec­
tors defining the character of the primary and secondary
font. The basic unity scaled size of the character (height
of the letter E for alphabetic fonts) is defined as 21 units
high.

If size is negative, the absolute value of the least sig­
nificant bit has a precision of l/16th units. For example,
if the positive value of size is 10, then the equivalent
negative value would be 160. Use of negative size
provides greater resolution for small scaling values.

Character string rotation

(void)plotopt(AHG, (long)angle);

Set the character string rotation about the current x-y
coordinates to angle in radians times 10,000. The angle
is measured counter-clockwise from the positive x-axis.
Note that x and y offset participate in the rotation (see
XOFF and YOFF).

Character offsets

(void)plotopt(XOFF, (long)xoii);
(void)plotopt(YOFF, (long)yoii);

XOFF and YOFF offset the center position of a character
string from the current pen x-y coordinates. Note that
these offsets are also rotated by ANG.

Justification

(void)plotopt(JLEFT);
(void)plotopt(JRIGHT);
(void)plotopt(CENTER);

These operations set the justification mode of TEXT
character string plotting. The default JLEFT mode spec­
ifies left justification of the text: the net coordinate po­
sition specifies the coordinate of the center of the first
character of the string. Similarly, JRIGHT will preform
right justification (last string character's position) and
CENTER will center the string on the net coordinate.

Interline spacing

(void)plotopt(LEAD, (long)lead);

When employing the \n character in text strings the
newline spacing is determined by LEAD. The value of
lead is in l/8th units and is multiplied by the current
size of the primary font to determine a temporary ad­
justment to the y-offset for each newline encountered
in the TEXT string. A typical value is 12 (1.5 times the
font size). If this parameter is to set overprinting will
occur when a newline is encountered in text strings.

Character plotting examples

The following program demonstrates calls to several of
the character string plotting options, and the graphic
results are shown in figure 2. Ellipses in the listing
represent initializations and setup found in the previous
example.

/* convenient macro */
tdefine cmsize(s) plotopt(SIZEA

(long)(-(s)*16*200/21.))

Line Plotting

mainCargc, argv) char **argv; {
float size;
char str[20];
long rot;

plotopt(SFONT,"-");
cmsize(.22);
moveto(.5*XMAX,
lineto(.5*XMAX,
moveto(.5*XMAX,

/* select standard font */
/* set size to .22 cm */

YMAX); /* draw a center line */
0); /* for reference */
.9*YMAX);

/* left just default */
plotopt(TEXT, "Left justified ,22cm string");
relmoveto(0,-100);
plot opt (JRIGHT); /* change justification*/
plotopt(TEXT, "Right justified string");
relmoveto(0,-100);
plotopt(CENTER); /* center string */
plotopt(TEXT, "Centered String");
relmoveto(0,-100);
plotopt(JLEFT); /* mult-line text */
plotopt(LEAD, (long)(12));
plotopt(TEXT, "Some lines of text with\n\

some newlines which\n\
display a short sentence");

moveto(.5*XMAX, .5*YMAX);
plotopt(JRIGHT); /* display various */
plotopt(XOFF, -SOL); /* sizes of text */
for (size « .4; size > .06 ; size -» .05) {

cmsize(size);
sprintf(str,
plotopt(TEXT,

7..2fcm size E'
str);

size);

relmoveto(0, -80);

moveto(.75*XMAX
cmsize(.22);
plotopt (JLEFT);
plotopt (XOFF, 70L);
for (rot - 0; rot < 60000; rot

plotopt (ANG, rot);
plotopt (TEXT , "Spinner") ;

.25*YMAX); /* display some
/* rotated text

7854) {

*/
*/

Symbol Plotting

Symbol plotting posts a selected symbol at each coordi­
nate position specified by a pxyxmit execution. Several
of the following operations involved with symbol plot­
ting are basically the same as for text operations except
that no provision is made for offsets or string plotting.
When performing symbol plotting both the font and
scaling operations must be performed.

Select symbol font

(void)plotopt(SFONTS, (char *)nante);

0

I
Right justified strin<

Centere
<
<
(

.40cm size E
0.35cm size E

0.30cm size E
0.25cm size E

0.20cm size E
0.1 5cm size E

°-«ta"-E

.eft justified .22cm string

I
d String

>ome lines of text with
iome newlines which
lisploy a short sentence

a>
v_ c /
&/ C Cr

*&/
jsuujds^ Spinner

$>°<S$Os

/' f \
CD

Figure 2: Example of basic string plotting calls

This operation is identical to the SFONT and SFONTA
operations except that the user will tend to choose fonts
that are more suitable to symbol plotting. The standard
system font (name = "-") may be employed for symbols
since many of the characters in the range 1 to 30 are
suitable for point plotting.

Symbol size

(void)plotopt(SSIZE, (long)size);

Set the scaling multiplier of the symbol character to
size. As with character size, if size is negative then
the absolute value of the least significant bit has a pre­
cision of 1/16 units.

Symbol character rotation

(void)plotopt(SANG, (long)angle);

Set the symbol rotation to angle in radians times
10,000. Angle is measured counterclockwise from the
positive x axis.

Select symbol

(void)plotopt(SYM, (int)char);

The selected symbol will be posted at each coordinate
specified by a pxyxmit command. If char = 0 then the
posting operation is suspended.

Line Plotting

When a pen is initialized, the ability to draft solid lines
is automatically enabled.

8 CREATING METAGRAPHIC DATA

Dash line mode

(void)plotopt(DASH);

This option sets the drafting mode to dashed lines.
Note that suitable DHASK and DSIZE selections should
be made before executing a dashed line pen motion.

Dash attribute

(void)plotopt(DHASK, (long)mask);

Mask is a word which contains a bit pattern to designate
the pen down (bit on) and pen up (bit off) characteristic
of the dashed line. The pattern is the least 16 bits
significant bits of the word.

Dash element size

(void)plotopt(DSIZE, (long)size);

Size sets the length of each bit element of the mask.

Select solid line mode

(void)plotopt(SOLID);

Set the line drafting mode to generate a solid line.

Select Bezier line mode

(void)plotopt(BEZIER)
(void)plotopt(BEZIERN)

Bezier line drafting generats smooth lines with two in­
termediate points defining the curve passing through
every third node point. There should be a minimum of
four points denning the curve and the total number of
points 1 should be evenly divisible by 3. BEZIER turns
Bezier mode on and BEZIERN turns it off.

Line Symbol Selection

(void)plotopt(FSYMS, (char *)str);

The null terminated character string str may contain
up to 255 characters that determine the sequence of
symbols to be plotted along the line. The special symbol
value of \177 is reserved as a spacing character and
denotes an open segment equal to the specified symbol
spacing. If the most significant or sign bit of any symbol
character the following character is to be rotated 180°.
The font determining the symbol graphic is determined
by the symbol font.

The symbol string is repeated along the line unless
a; \377 is encountered in str. In this case, character
drafting is suspended until a new line is started at which
point the string is drafted from the beginning. This
feature is especially useful with the Bezier option in
drafting curved labels.

Line Symbol Size

(void)plotopt(F_SIZE, (long)size);

Set the scaling multiplier of the symbol character to
size. As with SIZE, if size is negative then the abso­
lute value of the least significant bit has a precision of
1/16 units.

Line Symbol Separation

(void)plotopt(F_DIST, (long)dist);

Dist determines the intersymbol distance in units.

Extended line drafting examples

Figure 3 shows the results of the following example pro­
gram demonstrating the extended line drafting capabil­
ities of program plotter.

Symbol Line Plotting

Lines may be drafted as a repeated set of symbols and
optionally connected by a solid or dashed line. To de­
select the symbol line option either a SOLID or DASH
option must be selected.

Symbol line mode

(void)plotopt(FPLOT); or
(void)plotopt(FPLOTN);

FPLOT specifies that the symbols are joined with a line,
FPLOTN specifies that symbols are not to be connected
with a line.

/* more useful macros */
ftdefine cmssize(s) plotopt(SSIZE,\

(long)(-(s)*16*200/21.))
ftdefine cmfsize(s) plotopt(F_SIZE,\

(long)(-(s)*16*200/21.))

static XY
line[]={-4,-3, 2,3, 3,2, 3,1, -4,-3, T,0};

plotopt(SFOHTS, "-"); /* select standard
cmssize(.2); /* and set size
plotopt(SYN, 023); /* select symbol

,75*YMAX);
/* do box with symbol

moveto(.25*XMAX,
do_obj(box, 200.);
plotopt(SYM, 0);

*/
*/
*/

*/
/* turn off symbol mode */

plotopt(DMASK, 0x5555); /* set dash mask */

Request to Plotter

plotopt(DASH); /* select dash mode
plotopt(DSIZE, 20L); /* set dash size
moveto(.75*XMAX, .75*YMAX);
do_obj(box, 200.); /* dashed box
plotopt(DMASK, Oxf333); /* set dash-3 dot
do_obj(box, 230.); /* plot box
plotopt(F.DIST, 40L); /* inter sym dist
cmfsize(.3); /* set symbol line sz.
plotopt(SFONTS, "-syml"); /* set sym. font
plotopt(FSYMS, "\211\213"); /* sym string
plotopt(FPLOT); /* symbol str mode
do_obj(box, 150.); /* another nested box
plotopt(F.DIST, OL); /* no sym dist
plotopt(FPLOTN); /* plot w/o line
moveto(.3*XMAX, .3*YMAX);
do_obj(line, 100.); /* four point line
moveto(.5*XMAX, .3*YMAX);
plotopt(SFONTS, "-"); /* select std. font
plotopt(SYM, 3);
plotopt(DASH);
do_obj(line, 100.);
plotopt(BEZIER);
plotopt(SOLID);
do_obj(line, 100.);
plotopt(SYM, 0);
plotopt(F.DIST, 12L)
plotopt(FPLOTN);

/* select symbol 3
/* set dash line mode
/* do line w/ symbols
/* Bezier line mode
/* with solid line

/* turn off symbols
/* add letter space
/* do text on Bezier

plotopt(FSYMS,"Atlantic Ocean\377");
moveto(.7*XMAX, .3*YMAX);
do_obj(line, 100.);

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

Figure 3: Examples of extended line plotting calls

Request to Plotter

The programmer can make inquiries of program plot­
ter by means of the plotreq function. In all cases
plotreq returns a pointer to the structure ANSWR:

tfdefine MAX_USTR 20
typedel struct _answr {

int cmd;
long x, y, code;
char str[MAX_USTR+l];

} ANSVR;

Depending on the option, one or more of the elements
of the structure are updated by the response from plot­
ter. Plotreq also ensure synchronization between the
application program and plotter.

Return error status

ANSWR *p;
p = (ANSWR *)plotreq(ERROR);

The code value of the ANSWR structure is updated with
the current error level of plotter. The meaning of each
error code is given in graphics.h. Note that this call
will clear the setting of error to 0 in plotter so that
subsequent error requests will indicate error conditions
since the last plotreq(ERROR) call.

Return cursor position

ANSWR *p;
p = (ANSWR *)plotreq(CURSOR);

If the graphics device is interactive and has cursor ca­
pability the current position of the cursor is returned in
the x-y values of the ANSWR structure. In addition, if
the device has supplementary information generated by
the cursor, these data are placed in the character string
str. If the device does not have cursor capability the
command is ignored.

Return maximum x y size of device

ANSWR *p;
p = (ANSWR *)plotreq(P_SIZE);

This function will return the maximum size of the co­
ordinates that the device is capable of handling in the
x-y structure values. Remember that the minimum x-y
coordinate of any device is always considered as 0, 0.

Current font size (Archaic)

This option preceded autoscaling of the fonts and is
listed here only for reference.

ANSWR *p;
p = (ANSWR f)plotreq(FSIZE);
p = (ANSWR *)plotreq(FSSIZE);

The unsealed size of the current primary pen (FSIZE)
or secondary font (FSSIZE) is returned in the structure
value code. If referenced font is not selected then a 0
value is returned.

10 PLOTTER DRIVERS

Metagraphic file format

The metagraphic control stream for this system was de­
signed to generate a highly compressed data stream to
minimize the storage required for large volume, detailed
graphic files. It is also designed to be transportable be­
tween any 8-bit byte computer processor system so that
metagraphic files created on one hardware system can
be displayed on a completely different system.

The structure of the metagraphic stream is quite sim­
ple, consisting of a command byte shown in Table 1 that
may be followed by argument bytes. Three of the four
classes of command byte have a 5 bit option field that
allows up to 32 operations that are discussed in the exe-
cutional documentation, and are mostly associated with
output of the plot opt () procedure. Option's numeric
values are defined in graphics.h.

Table 1: Metagraphic command byte.

bits
7
0
1
1
1

6 5
n

0
0
1

0
1
r

4 3 2 1

option
0

option

option

P nx ny

no. arg.
bytes

1 <n<3

none

variable

nx + ny

type

-BYTE and _LOMG

JTOARG

_STR

Ax, Ay coords.

 Bits 7 and 0 are respective most- and least-significant
bits.

 Character string must be null terminated (\0 char­
acter).

 r is relative motion flag, r = 1 for true, r = 0 for
false.

 p is pen-up flag, p 1 for pen-up to coordinates, p =
0 to draw line to coordinates from current position.

The fourth class of command byte transmits the co­
ordinates controlling pen motion along with a rela­
tive/absolute motion flag and pen control flag. Co­
ordinate values associated with this command are in
incremental mode (viz., x-y distance from the last pen
position) with the initial pen position at location 0,0.
Procedure pxyxmit () is principally associated with this
command. One or both of the coordinate values may
be missing if zero but if both are non-zero Ax precedes
Ay in the stream.

Integer arguments associated with the .LONG and co­
ordinate commands are signed values up to 3 bytes long,
and the order of the output is from most significant to
least significant byte. The number of required bytes is
determined by the numeric value so that numbers in the
range -128 to 127 require one byte, -32,768 to 32,767

require two bytes, etc.. The _BYTE argument is con­
sidered a single, unsigned integer with a value between
0 and 255, and plot opt () extracts the value from the
8 least significant bits of the second argument of type
int,

NOTE: because a metagraphic file is a binary file,
users must be sure that necessary options are selected
when performing inter-system transportation of the
metagraphic data.

Plotter drivers

Program plotter is a translator of the device indepen­
dent metagraphic command stream into control opera­
tions compatible with the plotting device selected by the
user at runtime. In order to maintain expansion flexibil­
ity for adding new plotters the internals of plotter are
clearly divided into two operations: those common to all
plotting operations such as parsing the metagraphic in­
put, line clipping, character generation, etc., and those
that are unique and specific to individual plotters that
are contained in code sections termed device "drivers".
Drivers may be either internal procedures linked and
loaded as part of program plotter or external programs
called by plotter.

Internal drivers

The easiest way to discuss internal drivers is to examine
the debugging driver in file Ddebug. c (all distributed in­
ternal drivers are in files named Dname . c where Dname
is the internal entry point identifier). The following is
the declarative and control synopsis for Ddebug:

/* Debugging driver */
#include "plotter.h"
#include <varargs.h>

/* "s" may be larger */
static char s[2] » "\0";

/* required structure for return data */
static XYS cursor {0, 0, s};

/* basic range */
« define XPMAX 3000
define YPMAX 2000
static long old_pen » -1;

XYS *
Ddebug(va_alist) va_dcl {

va_list vap;
int cmd, i;
long pen, x, y;
XYS *ret - ftcursor;

va_start(vap); cmd » va_arg(vap, int);
svitch(cmd) {
case D.SCALE: ... /* set scaling */
case D.INIT: ... /* initialization, print

Dglobal values */

Internal drivers 11

case D.DONE: . . .
case D.PANIC : . .

case D.DISABL: .

case D.MOVE: . . .
case D.LINE: .. .

case D.ERASE : . .

case D.PEN : . . .

case D.STRING: .
case D.CURSOR: .

default: . . .

va_end(vap) ;
return(ret) ;

/* normal completion */
/* completion due to signal

trap */
.. /* disable graphics mode

(some terminals) */
/* move, pen-up */
/* move, pen-down (draw a

line) */
/* erase (clear screen),

NO-OP on hard copy */
/* select plotter's

mechanical pen */
.. /* device dependent str */
.. /* get cursor location and

key */
/* should never occur, see

system manager */

/* cleanup varargs */

The details of each case statement will be discussed
later.

The first item to note is that the system header file
varargs.h and the local header file plotter.h (which
has an embedded stdio.h include) must be included by
any driver procedure. Program plotter calls the driver
with one to three arguments depending upon the first or
command (cmd) argument, and expects a return value
of a pointer to a structure XYS:

typedef struct {
long x, y;
char *s;

} XYS;

for the D_INIT and D.SCALE commands where the x and
y values are to be set by the driver to the maximum size
of the device's plotting area (scaled by Dglobal. scale.
In the case of interactive devices with a cursor, the re­
turned values of x-y are the scaled cursor position and
s points to a string containing the cursor key value.

Program plotter also maintains a structure Dglobal
to communicate addition control information to the
driver:

struct {
double scale; /* basic scaling parameter */
int dargc; /* count of device (-D) args */
char *dargv[MAX_DARGS]; /* list of device (-D)

args */
int reverse; /* reverse axis */
int model.no; /* plotter model */
int quiet; /* mute <bell> wait response at

end of plot */
} Dglobal;

The only element of this structure that will change dur­
ing a job is scale because of occurance of the meta-

graphic RESCALE command. The value of scale is ini­
tially set to 1.0 or the value associated with the plotter
runline -s option.

Dargc and darvg are extracted from runline options
-D value where only the string value is addressed in
dargv. This allows device specific options to be set
at runtime.

The flags reverse and quiet are normally 0 unless
the respective runline options -r or -q are used. Each
device is considered to have a "normal" mode of relat­
ing the x-y axis to the respective edges of the plotting
surface and reverse reverses this relationship. For out­
put to interactive devices it is normally necessary to
"hold" the plot on the screen until the user has had a
chance to review the results. Signaling the end of the
graphic operations is done either by making a cursor
request which displays the cursor on the screen or by
ringing the device's bell and waiting for some form of
acknowledgement from the user typically, just a "re­
turn" key stroke. In certain applications the latter op­
eration should be suppressed with the quiet switch.

Many plotting devices use a common control mech­
anism. The Tektronix 4010-4014 control codes are ex­
amples of codes frequently employed by several other
manufacturers. Rather than develop individual nearly
identical drivers for each of these systems the differ­
ences can be accommodated by a single driver that ex­
amines the value of model.no to alter various phases
of its operations. The initializing value of model.no is
determined at runtime when plotter determines what
device has been selected and looks up the selected de­
vice in a table in devlist. c. Driver D4014 distributed
with this system provides an example of how this pa­
rameter can be used.

Generally, output by the driver is to stdoui which
may have been freopen(3)'ed by plotter if the run-
line parameter -o was used. Stdin input is unaltered
by plotter. Special manipulations of I/O control may
be required, especially for hardcopy devices on RS232
ports, which may be non-portable because of variations
of UNIX systems.

Opening and closing operations

Program plotter always calls the device driver with a
D_INIT command before any other operations. In the
case of Ddebug this is handled by:

case D.INIT: /* initialization, print Dglobal
values */

printf ("D.INIT: scale: */,g, model.no: */.d\n",
Dglobal.scale, Dglobal.model.no);

printf ("\treverse: */.s, quiet: */,s\n",
Dglobal.reverse ? "ON" : "OFF",
Dglobal.quiet ? "ON" : "OFF");

printf("\tXd -Dargs\n", Dglobal.dargc-1);

12 PLOTTER DRIVERS

for (i » 1; i < Dglobal.dargc; ++i)
printf (" \t\f/.s\n", Dglobal. dargv [i]);
/* return maximum size of device */

rescale:
if (Dglobal.reverse) {

cursor.x = YPMAX / Dglobal.scale;
cursor.y = XPMAX / Dglobal.scale;

} else {
cursor.x » XPMAX / Dglobal.scale;
cursor.y = YPMAX / Dglobal.scale;

}
break;

Since this is a debugging procedure, only the contents
of the Dglobal is printed. The required return value
for the D_INIT call is the maximum size of the plot­
ter returned in the structure XYS's x and y values so
that plotter can set the maximum allowable clipping
window and thus ensure that all graphic coordinates
passed to the driver will be in this range. Note that
this value should be modified by Dglobal.scale. In
the case of normal drivers other initialization code will
replace the print statements. If the driver determines
that it cannot function a null return will cause plotter
to abnormally terminate.

Because of the label rescale in the above example,
the D_SCALE will be discussed here:

case D_SCALE: /* set scaling */
printf("D_SCALE: 7.g\n", Dglobal.scale);
goto rescale;

This call is made only if the RESCALE metagraphic com­
mand is used and, as in the case of D_INIT, the new
maximum size of the device must be returned.

Two methods of closing the driver's operation are
by means of the normal D_DONE call or the abnormal
D_PANIC which represents an emergency completion due
to a trap on a system interrupt. In Ddebug these entries
are handled by:

case D_DONE: /* normal completion */
printf("D_DONE, hit return when done: ");
if (! Dglobal.quiet) {

putchar('\006');
fflush(stdin);
(void) getcharO;

}
break;

case D_PANIC: /* completion due to signal
trap */

printf("D_PANIC\n");
break;

The D_DONE code is typical of interactive devices except
for the printf statements. Usually the break before
case D.PANIC is omitted and "cleanup" code common
to both entries is placed in the D_PANIC section. If
plotter is installed, the reader may simply execute:

plotter -d debug

The D_INIT printout will appear on the terminal and
plotter will expect metagraphic input from the key­
board. Entering a "D (end of file) causes the D_DONE
messages to appear. Striking the interrupt key will
cause the D_PANIC entry to be called.

Selecting mechanical pen

After the initialization call and before any drafting op­
erations plotter always calls the driver with a D_PEH
command where the second argument is type long pen
number:

case D_PEN: /* select plotter's mechanical
pen */

pen » va_arg(vap, long);
printf ("D_PEN: '/.Id (replacing: */,ld)\n",

pen, old_pen);
old_pen = pen;
break;

Because plotter is often repetitive with this call the
driver program should retain the value of the last pen
call and ignore the entry when the last and current pen
are identical.

Because a metagraphic integer is at most three bytes
long the actual length of pen is up to 23 bits (8388608).
Actual translation of the mechanical pen number into
physical pens or other line drafting attributes available
on the device is a decision of the driver writer. In most
cases of plotters with no_pens true mechanical pens
the author has determined the final selected pen by:
pen '/.= no_pens.

Drafting operations

Drafting operations are controlled by the D_MOVE and
D_LINE commands where there are two, type long coor­
dinates in the argument list:

case D_MOVE: /* move, pen-up */
printf("D_MOVE");
goto printxy;

case D_LINE: /* move, pen-down (draw a line) */
printf("D_LINE");

printxy:
if (Dglobal.reverse) {

y = va_arg(vap, long) *
Dglobal.scale +0.5;

x = XPMAX - va_arg(vap, long) *
Dglobal.scale +0.5;

} else {
x = va_arg(vap, long) *

Dglobal.scale +0.5;
y = va_arg(vap, long) *

Dglobal.scale +0.5;

External drivers 13

printf(" x/y: 7.61d 7.61d\n", x, y);
break;

The scaled values of x and y will always be in the range
from 0 to the maximum limits returned to plotter in
response to the D_INIT or D_SCALE calls. Computations
required for axis reversal often vary with capabilities of
the device.

Cursor input

Cursor input is designed principally for use with in­
teractive software for tty type terminals such as MAP-
GEN'S and PLOTGEN'S zoom or preview program. The
D.CURSOR command entry (no additional arguments)
expects the driver to return the current position of
the cursor and a keyboard character simulated by the
Ddebug driver as:

case D.CURSOR: /* get cursor location and
key */

for(;;) {
printf ("D_CURSOR: enter x y c\n");
f flush (st din) ; /* no type-ahead */
if (scanf ("7.1d */.ld %ls",&cursor.x,

ftcursor.y, s) »» 3) break;
printf ("?\n");

}
if (Dglobal. reverse) {

cursor. y = cursor. x / Dglobal . scale + .5;
cursor. x = cursor. y / Dglobal . scale + .5;

} else {
cursor. x » cursor. x / Dglobal. scale + .5;
cursor. y = cursor. y / Dglobal. scale + .5;

}
break;

Miscellaneous control

Two commands, D.DISABL and D_ERASE, are similar in
usage to the D_CURSOR command and are used in in­
teractive applications. D.DISABL is used with terminals
that have two modes of screen display: text and graph­
ics. The driver is expected to put automatically the ter­
minal in graphics mode in response to graphic calls and
return it to text mode only when a D_DONE, D_PANIC or
D.DISABL command is executed. D.ERASE is a graphic
command that should clear the terminal's screen.

Note that the D.CURSOR, D.ERASE and D.DISABL com­
mands are normally ignored by hardcopy output de­
vices.

Via plotopt (SPECIAL ,) , the D_STRING command al­
lows device dependent information to be passed to the
driver through the metagraphic stream. The second ar­
gument of this entry is a pointer to a null terminated
string. Usage of this option eliminates the device in­
dependence of the system, but it may be necessary for

some applications. The SPECIAL-D_STRIHG is transpar­
ent to plotter's operation.

Code for Ddebug.c's version of the miscellaneous
commands are:

case D.DISABL: /* disable graphics mode (some
terminals) */

printf ("DJ)ISABL\n");
break;

case D.ERASE: /* erase (clear screen), NO-OP
on hard copy */

printf("D_ERASE\n");
break;

case D.STRING: /* device dependent string */
printf("D.STRING: <£s>\n",

i va_arg(vap, char *));
break;

Example execution of Ddebug driver

A test program boxes(l) is distributed with the system
which generates a set of nested boxes where each box is
drawn with a new mechanical pen. To show plotter's
operation with the internal debug driver execute:

boxes 10 2 1 -d debug

The following should appear on the terminal:

D_INIT: scale: 1, model.no: 0
reverse: OFF, quiet: OFF
0 -Dargs

D.ERASE
D.PEN: 0 (replacing: -1)
D.STRING: <Boxes special test>
D.PEN: 0 (replacing: 0)
D.MOVE x/y: 0 0
D.LINE x/y: 30 0
D.LINE x/y: 30 30
D.LINE x/y: 0 30
D.LINE x/y: 0 0
D.PEN: 1 (replacing: 0)
D.MOVE x/y:
D.LINE x/y:
D.LINE x/y:
D.LINE x/y:
D.LINE x/y:

10
20
20
10
10

10
10
20
20
10

D.DONE, hit return when done:

External drivers

When the author first became involved with develop­
ing programs for operating plotters in the mid 1960's it
was relatively simple to develop the sequence of com­
mands necessary to control their actions. Even into
the early 1980's including the intervening advent of
graphic terminals most machines could be controlled

14 PLOTTER DRIVERS

with code that was not difficult to develop. But as tech­
nology developed, the sophistication of the graphic ma­
chines dramatically increased and caused a significant
increase in control complexity. Because of this complex­
ity, many manufacturers recognized that they needed to
supply software (often as proprietary source code) with
their hardware product for use by the buyer's applica­
tion graphic packages. An example of such software is
the Calcomp FORTRAN graphic subroutine library sup­
plemented with additional entries allowing access to fea­
tures unique to the manufacturer's device.

Including such proprietary software as an integral
part of program plotter would limit its distribution
and multiple systems using identically named proce­
dures could not be linked into one program. To ac­
commodate this situation the external driver was intro­
duced where external programs unique to each device
in the local environment would be spawned by plotter
and passed the basic graphic operations decoded from
the metagraphic input.

Internal driver procedure Deztdev provides the mech­
anism allowing plotter to execute and control an ex­
ternal driver via the control codes in Table 2. In this
case, the Dglobal.model number defines the external
device program to be executed and whose name and
size characteristics are extracted from the structure ar­
ray model:

f include <signal.h>
f include <varargs.h>
f include "plotter.h"
tdefine EXTDEV
#define PLOTTER
f include "graphics.h"
idefine CTS.CM 200

struct {
char *prog; /* name of external

program */
long xsize, ysize; /* size of plotter */

} model [] - <
"extdebug", 15000, 10000, /* simple listing

routine */
"C1077", 65535, 17525, /* Calcomp 1077 */

"dp8", 65535, 17270,
(char *)0,910,700,

/* Houston DPS */
/* Zoom version of

SunCore */

f define XPMAX model[Dglobal.model_no].xsize
f define YPMAX model[Dglobal.model_no].ysize

In the cases of hard copy plotters the x and y sizes
represent 200 counts/cm devices and final scaling will
be done by the external driver when necessary. Note
that EXTDEV and PLOTTER must be denned before the
included header graphics .h to resolve the control code

acronyms appearing in Table 2. The external driver
extdebug is supplied with the system for testing pur­
poses.

Table 2: External driver communication stream.

Operation

Beginning of plot

End of plot

Select pen (short)

Select pen (24 bit)
Move pen-up
Draw to

Special string

Code

_BOP
_EOP

_PEH

_PEHL
-MOVE
-DRAW
-SPCL

Argument bytes

none

none

Po

P2

Xl

co

Pi
X0

Po

yi

Cn

yo

0

The subscript numbers for p, x and y denote their
significance. Pen motion coordinates are unsigned,
absolute positions.

The driver uses the model information in the initial­
ization phase in spawning the external driver program:

case D_INIT:

if (model[Dglobal.model.no].prog) {
strcpy(name, getenv(_GENVB));
*(strrchr(na»e, V) + 1) - '\0';
strcat(name,

model [Dglobal. model.no] .prog);
Dglobal.dargv[0] » name;
sprintf (ssize, "-S7.d,%d,7.d",XPMAX, YPMAX,

CTS.CM);
Dglobal. dargv [Dglobal. dargc] = ssize;
if (!(translat » vpopen(Dglobal.dargv)))

bomb(l,"ext. driver %s failed to\
exec\n".name);

(void)signal(SYS.SIGCLD, dead.child);
} else

translat » stdout;
putc(_BOP, translat);

The Dglobal. dargv array is used as the system proce­
dure execv(2)'s arguments so that runline -D arguments
as well as the plotter size denned in the local model ta­
ble and the resolution of the data in counts/cm in a
-S option are passed to the external driver Note that
the -D part is missing from the former arguments. Full
path name of the external driver requires that the exter­
nal driver must reside in the same directory as program
plotter which is determined from the environment vari­
able set by the compile time macro _GEIVB (typically
"GRAPHS").

Installing device drivers 15

The popen(3) UNIX function was not used because
it requires a string equivalent to a keyboard execution
and performs an intermediate execution of sh(l) with
this string. Procedure wpopen (see file wpopen.c for
details) directly spawns the external driver specified
in the first element of the string pointer array argu­
ment and passes the entire array as arguments for the
argv of the spawned process main entry. Stdout and
stderr of the external driver will be the same as for
plotter and stdin will be connected to the pipe from
the local stream pointer translat. As an equivalent
of pclose(3), procedure wpclose (in file wpopen.c) is
called in the D_DONE-D_PAHIC section of the driver.

If the first argument of the external procedure bomb
(in file plotter. c) is non-zero it indicates that a system
error is encountered and procedure perror(3) should be
called. The remainder of the arguments are passed to
vlprintl(3) as format and format arguments. Bomb
does not return.

For conditions where the external driver is not found
or fails signal(2) is used to trap to the local function
dead.child and thus prevent plotter from continuing
to write data to a non-existant process. Unfortunately,
this monitoring of a spawned process currently varies
between different versions of the UNIX operating sys­
tem. The conditional compile statements at the begin­
ning of the file Dextdev.c attempt to resolve some of
these differences.

Use of plotter with graphical interface systems

Previous graphic terminal applications made the devel­
opment of a single, interactive program working in a
bidirection communications mode with plotter a sim­
ple and effective method of operation. In this case, it
was plotter's responsibility to provide interface with
the terminal and not the interactive, calling program,
thus one program could support a variety of terminal
types. But recent developments in UNIX graphical in­
terface subsystems such as XI1 has caused a change in
how plotter is to be used in these environments.

In the case of XI1, the interactive program is neces-
sarly limited to the XI1 environment which already has
basic mechanisms for doing vector graphic primatives
and, consequently, can perform as the device driver for
plotter. Two implementation methods are possible:

1. revise plotter into a procedure to be directly
linked in to the application program, or

2. spawn plotter as a process which outputs back to
the parent process in a manner similar to using
external drivers.

The latter method was chosen to avoid problems such
as ensuring reenterability of the procedures and other
basic receding and debugging problems.

Dextdev provides this capability when model [] . prog
is null and it is assumed that the output will go to
stdout. Thus, a program executing progam plotter has
only to execute plotter and convert its output data
into vector graphic commands required by the graphical
interface system. Although this model entry may have
predefined coordinate limits, these limits can be readily
changed by use of the -DR runline argument and thus
can be used by by any calling system.

Installing device drivers

Drivers installed during compilation and linkage of pro­
gram plotter are determined by the file devlist.c.
T^his file contains two parts: necessary declarations of
drivers in the system and a structure array dev_list.
Because it is normal for most compilers not to require
that declared external references be resolved unless they
are part of executable code or data initializations, the
declaration list may contain modules not linked into the
final program.

The list of drivers to be linked into plotter is con­
tained in the structure declared in plotter.h:

struct DEV.LIST {
char *name; /* device name referenced by -d

option or TERN environment
parameter */

XY *(*dev)(); /* device dependent driver
routine */

int model; /* Device options for small
variations in generic device.
See individual drivers for
meaning */

Name is how the driver is referred to at execution time
by either explicit use of the -d runline parameter or the
environment parameters GTERM or TERM. Structure ele­
ments dev and model are pointers to the driver's entry
point and previously discussed model number.

In devlist . c the global list of devices dev.list is
initialized as shown in the following example:

struct DEV.LIST
dev.listD - {

/* should leave these
"debug", Ddebug, 0,
"exdebug", Dextdev, 0,

"ranger", Dranger, 0,

/* selected for local
"ega", Dgfx, 0,
"AT386", Dgfx, 0,
"at386", Dgfx, 0,
"ps", Dpstscr, 0,

here */
/* debug device mode*/
/* debug external

device mode */
/* range determination

routine */
system needs */
/* uPort gfx */
/* uPort gfx */
/* uPort gfx */
/* PostScript

printer */

16 FONTS

"go 140", D4014, 2, /* GraphOn 140 */
"C5800", Dextdev, 5, /* Calcomp 5800

electrostatic */
"sunzoom", Dextdev, 7, /* SunCore - zoom */

#ifdef IGNORE
"c970", Dc970, 0, /* Calcomp 970

(200 c/cm res) */
"kong", Dkong, 0, /* Kongsburg -

photohead */

"Imogen", Dextdev, 4, /* Imogen laser */
* endif

"bumdev" , Dbuadev , 0 ,
0, 0, 0,

Entries in the conditional compilation section (always
false) accommodates a complete list of available drivers
but are not linked in the current installation. The
last two lines should remain unaltered because plot­
ter senses the null name field of the last line as the end
of the list and uses the last entry, Dbumdev, as a default
driver.

-20n-n-r

-10

10

20-20 -10 0 10 20

Figure 4: Stroke pattern for the Hershey Simplex
Roman letter A, character 501.

Fonts

Characters and symbols in this graphic system are
drafted or "stroked" characters with most of the charac­
ters based upon the Hershey symbol coordinate tables
(Wolcott and Hilsenrath, 1976). For use by program
plotter, selected characters are selected and encoded
into binary font files to be loaded at runtime. Ap­
pendix A contains tables of the standard set of font
symbols distributed with the graphics system. In this
section the graphic layout of the Hershey system, char­
acter table files, and generation of fonts for use by plot­
ter are discussed.

Hershey Drafting System

Because it is often necessary to add characters or sym­
bols to the graphic system a short review of the mecha­
nism will be made. A Hershey character is based upon
an integral cartesian grid with positive y-axis down the
page. Original limits to the axis were ±49 units but
this has been expanded to ±127 units which is sufficient
resolution for most graphic applications using stroked
characters. Unlike modern computer typographic de­
scriptive methods the character coordinates are cen­
tered (or nearly so) on the coordinate system rather
than being relative to a baseline and left edge.

Figure 4 shows the detail of drafting the letter A
where the small circles are at the line node points and
the two vertical bars denote the horizontal size of the

character. The Hershey table data for drafting this
character are in the form:

501:-9 9:0 -12:-8 9:128 0:0 -12:8 9:128 0:-5 2:
:5 2:129 0:

The first number is the Hershey character number which
is followed by the x coordinates denoting the horizontal
limits of the character and the remaining numeric pairs
are either x-y coordinate pairs or pen control. Original
pen control was special coordinates -64 0 for penup to
the next coordinate and -64 -64 to terminate the char­
acter but this was altered by the author to respective
128 0 and 129 0 so as to not conflict with the new ±127
count resolution. A colon character must separate the
fields and begin a continuation line. Figure 5 shows a
roman A which is drafted from the table entry:

3001:-10 10:0 -12:-7 8:128 0:-1 -9:5 9:128 0:0 -9:
:6 9:128 0:0 -12:7 9:128 0:-5 3:4 3:128 0:-9 9:
:-3 9:128 0:2 9:9 9:128 0:-7 8:-8 9:128 0:-7 8:
:-5 9:128 0:5 8:3 9:128 0:5 7:4 9:128 0:6 7:8 9:
:129 0:

The Hershey notation for character styles does not
follow common typological usage. Characters referred
to as "simplex" roman are normally termed gothic (i.e.
even weighting on all lines). Only those characters
termed "complex" or "triplex" roman are truly roman.
Similarly, Hershey's "gothic" are normally referred to
as text faces.

The original Hershey data set, updated with the char­
acters from pages 24 and 25 of Wolcott and Hilsenrath

Typesetting fonts 17

-10

10

20-20 -10 0 10 20

Figure 5: Stroke pattern for the Hershey Triplex Ro­
man letter A, character 3001.

(1976), consists of 1,595 characters numbered in mono-
tonically ascending order from 1 to 3926 and are con­
tained in the file HOOOO.tab.Z. Additional characters
have been added by the author and others, and are
contained in files H4000.tab and up. Although there
are gaps in the number sequence of the original set the
author has only added characters with numbers above
4000 and has used file names which "echo" with the
correct sort order.

Font structure

Program plotter requires characters from the Hershey
tables to be selected and placed into 128 character, bi­
nary font files whose structure is:

struct {
unsigned short size; /* total byte size of

structure */
unsigned short dir[128]; /* offset to start of

coordinates in
vect */

signed char vect[]; /* x-y pairs of
coordinates */

} font;

Character coordinates are extracted from the structure
by:

unsigned offset, ...
char *ptr, ...
int x, y;

if (offset = font.dir[in_char ft Ox7f]) {
ptr * vect + offset;
x » *ptr++;
y » *ptr++;

} /* else no character in position */

Pen-up code of the Hershey tables is changed to a -
128,0 x-y value and the end of character is a -128,-128
value.

The vertical size of a font is stored in font. vect [0],
(unused because a zero or null character terminates the
string) and allows plotter to normalize all fonts to a
common size of 21 units. For fonts containing the al­
phabet, size is the height of the letter E and, for purely
symbolic fonts, it is determined by general symbol size.

To create the fonts files the program symgen is pro­
vided which interprets a control file selecting the Her­
shey characters by Hershey number and assigns them
to the lont.dir position. Execution of this program

symgen select.file font.file HersheyjE ile[s]

The first runline argument is the name of a file which
contains a mapping of the selected characters and their
position in the font. The second argument is the name
of the output font file for plotter followed by the set of
Hershey data files in ascending Hershey number order.

The first line of the selection file contains two numeric
entries: vertical size of the font and baseline offset. This
is followed by lines containing either a single ASCII char­
acter or a two or three digit number followed by the
Hershey symbol number. Anything else on the line is
considered a comment. Table 3 in Appendix A lists the
contents of file sr.D used to create font -sr shown in
table 21. The order of the entries in the selection file is
not critical because symgen sorts the selection entries
by Hershey number so that the Hershey tables need be
scanned only once.

All of the standard font selection files use the naming
convention of font.D and are stored in the directory
basic-fonts. By convention, local or test font selection
files are suffixed with .d. A script file Hakefonts is
provided to generate all of the standard fonts used by
the system as well as any local . d fonts.

Typesetting fonts

For those systems which have device independent troff
(occasionally called dtroff or ditroff) special fonts are
also supplied as well as software (plroff) to interpret the
output and convert it to a system metagraphic stream.
This requires the UNIX utility makedev to process the
character set descriptor tables in directory trof f which
are to be installed in /usr/lib/f ont/devGRAPH.

18 REFERENCES

The fonts associated with typesetting have the origin
of the axis shifted to the left x size position (first nu­
meric value after the Hershey number) and the baseline
indicated by the second argument on the first line of
the selection file. Tables 26-30 in Appendix A display
these fonts.

References

Evenden, G.I., Botbol, J.M., 1985, User's manual for
MAPGEN (UNIX version): a method to transform
digital cartographic data to a map: U.S. Geolog­
ical Survey Open-File Report 86-706, 134 p.

Wolcott, N.M., Hilsenrath, 1976, Tables of Coordi­
nates for Hershey's Repertory of Occidental Type
Fonts and Graphic Symbols: NBS Special Publica­
tion 424.

19

Appendix A Standard Fonts

The standard fonts for this graphic system are listed in
this appendix and, to ensure portability of overlay files,
should be installed without modification. If new fonts
are desired additional entries should be added by local
site managers. Table 3 generates the standard font -sr
that is shown in table 21 is an example of a control
file used by program symgen to create font files for
program plotter.

For sites without device independent troff, fonts pre­
fixed with nr (tables 26-30) may be removed.

Table 3: Contents of symgen selection file sr.D for
making plotter font file -sr.

21 0
01 899
02 900
03 901
04 904
05 2281
06 841
07 842
08 843
09 844
10 845
11 846
12 847
13 850
14 851
15 852
16 856
17 857
18 862
19 2284
20 2293
21 735
22 727
23 2263
24 2266
25 2278
26 2276
27 2277
28 2233
29 766
30 642
31 0718

32 0698
! 0714

0717
0733
$ 0719
*/. 2271
ft 0734
' 0716
(0721
) 0722
* 0728
+ 0725

0711
0724
0710

/ 0720
0 0700
1 0701
2 0702
3 0703
4 0704
5 0705
6 0706
7 0707
8 0708
9 0709
: 0712
; 0713
< 2241

0726
> 2242
? 0715

<0 2273
A 0501
B 0502
C 0503
D 0504
E 0505
F 0506
G 0507
H 0508
I 0509
J 0510
K 0511
L 0512
H 0513
N 0514
0 0515
P 0516
Q 0517
R 0518
S 0519
T 0520
U 0521
V 0522
V 0523
X 0524
Y 0525
Z 0526
[2223
\ 4000
] 2224
* 2247
_ 4001

' 2249
a 0601
b 0602
c 0603
d 0604
e 0605
t 0606
g 0607
h 0608
i 0609
j 0610
k 0611
1 0612
m 0613
n 0614
o 0615
p 0616
q 0617
r 0618
s 0619
t 0620
u 0621
v 0622
w 0623
X 0624
y 0625
z 0626
{ 1407
1 723
} 1408
- 2246

20 APPENDIX A STANDARD FONTS

Table 4: Symbols for font -3osw

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

S

(

0

8

N

P

X
-

h

P

F

1

a
i
)
i
9

A

1

Q

Y

Q

1

«0

y

2

B
*r

0

g

3

J

R

Z

b

1
r

z

3

E*

X

fe

#

+

3

C

K

S

I
e

k

i

4

 S

I
SI

$

4

<

D

L

T

\
4

1

ft

I

5

T

0

X
-
5

a

E

fifl

U

]
t

vn

u

i

6

t

0

ft

8

>

F

N

Y
A

ff

n

V

 V

7

t

8

«*

9

/

7

?

e
0

w
=»
9
o

W

Table 5: Symbols for Caxtographic font (-cartr).

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

*

(

0

8

H

P

X

H

P

X

1

o
®

!

)

1

9

A

I

Q

Y

A

I

Q

Y

2

D

n

*
2

i

B

J

R

Z

B

J

R

Z

3

A
A

#

+

3

»

C

K

S

C

K

S

4

0
*

X

$

i

A-

D

L

T

D

L

T

1

5

ft

->

-

5
=

E

M

U

E

M

U

6

+

&

.

6

F

N

V

F

N

V

7

X

o

i

/

7
 ?

G

0

W

G

0

W

21

Table 6: Symbols for Cyrillic font (-cc).

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

3

n
q
fl

3

n
*i

1

K)

A

H

P

in
a

H

P
ill

2

H

B

H

C

m
6

&

c

m

3

I

B

K

T

I

B

K

T

T>

4

r
n
y
LI
r

n.

y
LI

5

fl

M

O

b

fl
M

$

B

6

E

H

X

3

e

H

X

3

7

JiC

0

U
K)

MC

o

U

Table 7: Symbols for font (-cgi).

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

e
n

i?
7T

1

A

I

P

a

i

P

2

B

K

E

ft
K

a

3

r
A

$

7
X

9

4

A

M

X

6

V-

X

5

E

N

*

K

V

*

6

z
M

<

1

7

H

0

7?

0

22 APPENDIX A STANDARD FONTS

Table 8: Symbols for font -cip

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

H

P

X

h

P
X

1

A

I

Q
Y
a

i

g
y

2

ff

B

J

R

Z

b

3
r

z

3

fi

1

\

c
K

S

c

k
s

4

fl

D

L

T

d

I

t

5

ffi

E

U

u

e

m

u

6

ffl

F

N

V

f
n

V

7

C
0

w

9
0

w

Table 9: Symbols for font -cri

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

(

0

8

@

H

P

X
N

h

P
X

1

j

)
1
9

A

I

Q
Y

a

i

q
y

2

n
*
2

t

B

J

R

Z
b

j
r
z

3

#

+

3

>
C

K
S

[
c
k
s

\

4

$

>

4

<

D

L

T

\
d

1

t

1

5

%

5
=

E
M
U

1
e
m
u

i

6

&

.

6

>

F

N

V
-

f

n
V

rx*

7

0

1

/
7

?

G

0

W

/

g
o
w

23

Table 10: Symbols for font -crp

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

(

0

8

@

H

P

X
\

h

P
X

1

i

)
1

9

A

I

Q
Y

a

i

q
y

2

ff

if

*

2
'.

B

J

R

Z

b

J
r

z

3

fi

#

+

3

C

K

S

[
c

k

s

i

4

fl

S
1

4

<

D

L

T

\
d
1

t

1

5

ffi

%

-

5
=

E

M

U

]
e

m

u

\

6

ffl

&

6

>

F

N

V
<*t

f

n

V

rs>

7

o

<

/

7
9

G
0

W

g
0

w

Table 11: Symbols for font -cscp

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\Hx

\15x

\16x

\17x

0

(

0

8

X

P

3C
*

k

A
06

1

/

)
1
9

A

3

2.

y
a

I

?

?

2

a

*

2

:

$

f

91

3

1>

/
T-

?

3

+

3

i

K

K

tf

c,

L

£>

4

$

,

4

3)

£

3

d

t

t

5

-

5
=

S

M.

U

«/

m>

u.

6

&

6

3>

Jf

V

t
n

o

7

o

/

7
9

$

W

?
»
w-

24 APPENDIX A STANDARD FONTS

Table 12: Symbols for font -din

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\Hx

\15x

\16x

\17x

0

6

(

0
8

H

P

X

h

P
X

1

u
I

)
1
9

A

I

Q

Y

Q

i

q
y

2

n

*
2

B

J

R

Z

b

J
r

z

3

>

+

3
i

C

K

S

[
c
k

s

{

4

A
<

$
,
A
<

D

L

T

\

d
I

t

1

5

0

%
-

5
=

E

M

U

]
e
m

u

}

6

U

6
>

F

N

V

f
n

V

7

a
-

/
7

G

0

W

_

g
0

W

Table 13: Symbols for font -dr

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

0
*

V

(
0

8

@

H

P

X
v

h

P
X

1

*

r

$
i

)
1

9

A

1

Q
Y

a

i

q
y

2

+
v
§
a
*
2

:

B

J

R

Z

b

i
r

z

3

o

X

e
t
#
+
3

f
C

K

S

[
c

k

s

1

4

O
*

*

±
$
1

4

<

D

L

T

\
d

1

t

5

O

n
oo

%
-

5
=

E

M

U

]
e

m

u

I

6

O

X

7T

&

.

6
>

F

N

V
s*.

f
n

V

r*j

7

A

A

4-

0

»

/

7

?

G

0

W

g
o

W

25

Table 14: Symbols for font -engl

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

(

0

8

3

>
X

*

IT
p
X

1

T

)

1

9

A

3

<$

if
B

T

S

2

r»

*

a
 *

s
a
s
z
b
*

r

z

3

+

3
* i
9 "

(C

«
»

r

k

B

4

$

*

4

9

I

01

6

I

1

5

-

5
=

£

4ft

01

*

m

u

6

&

*

e

y
N

1*

f
1C

u-

7

o

r

/

7

?

(9

(0

*

0
0

UT

Table 15: Symbols for font -germ

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

^

5)

X

$
p
J

1

2C

Sf

£1

?l

a

i

q

9

2

as
3
&
3
b

i
r

a

3

e
&
©

c

f
f
*

4

C

8

T

b
I
t

6

5

e
m
u

e

m

u

$

6

Cf
91
m

f
n

b

7

©

O

SB

9
0

to

26 APPENDIX A STANDARD FONTS

Table 16: Symbols for font -ital

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

D

Q

X

I)

P
X

1

H

X

Q

3

0

t

1

y

2

B

d

0

a
b

I
r

3

3

I

a
5

&

r

k

9

4

o
B

O

6

I

i

5

Q

02

a

f

m

u

6

E

D

V

f

n
u

7

6

0

CD

9
0

ur

Table 17: Symbols for font -ksyml

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

*

I

JT.

*

0

A
4
®
^
a
5

1

S

I

?

n

t
t
*
m
*
Q

tt

2

S

~.

0

q
j^
©
&
c
cf

d
^
>>

A

3

ffi

x:

^

tt

<D

i
A

^

A

X

1

4

'tttt

a

A.

«

©

6

1

$

A

x
ft

5

u

a
Q
0

5

A

E

o

X

ft.

6

-~

j

/\

w

o

i
e
i
K
+

a

7

T

4*

*

**

A

a
n.
®
(3

X

6

27

Table 18: Symbols for font -ksym2

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

^

-

#

Zl
-

I
«K

**

\
X

N

-

1

+

I

^

-

m
0
<*

zz
BB
0
*
^
^

2

X

n

m
®
o
//
Off

/
^
e
m

3

o
/

©
o

^ ,
m
Rvn i PPM v

0
^
d

4

^
\ \

T
+

m

388
A A

A

X

H

3

5

A

/
i

®

®

B

E3
^
C&

El

6

D
\x

nri
/
©
B
o

m
c*
»

-

7

#

LLLI

^

A

1

m
eza
^

^

Table 19: Symbols for font -OSH

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\l5x

\16x

\17x

0

b

(
0
8

H

P

X
-

h

P
X

1

u
B

)
1
9
A

1

Q

Y

a

i

q
y

2

Q
rr

O

2
:

3

J

B

Z

b

i
r
z

3

£

X

&

#

+

3

t
C

K

S

[
c

k

i

4

V

%
2
$
I

4
<
D

L

T

\
d

1

5

I

5

T

d

%

-

5

IE

M

U

1
«

m

u

i

6

i

U

&
.

6
>
r
H
V
A

f

n

V

Kf

7

i

0

=*

r

/

7
1
G

0

W

9
o

w

28 APPENDIX A STANDARD FONTS

Table 20: Symbols for font -sg

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

0

n

-#
7T

1

A

I

P

a

L

P

2

B

K

I

0
K

a

3

!

r
A

*

7
X

V

4

A

M

X

6

M

X

5

E

N

*

e

V

1>

6

z

£
e

7

H

0

7/

0

Table 21: Symbols for font -sr

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

0
*

V

(
0

8

@

H

P

X
V

h

P
X

1

*

r

t
!

)
1

9

A

I

Q

Y

a
i

q
y

2

+

V!

§

"

*

2

B

J

R

Z

b

J
r

z

3

o

X

©

t

#

+

3

i
C

K

S

[
c

k

s

\

4

0
*

*

±

,

4

<

D

L

T

\
d

1

t

1

5

0

n
oo

%
-

5
=

E

M

U

]
e

m

u

i

6

D

X

n

&

.

6

>

F

N

V
-

f

n

V

IN«

7

A

A

«-

O

1

/

7

7

G

0

W

9
o

w

29

Table 22: Symbols for font -sscp

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

X

<P

X

ft.

f"

x.

1

A

J

J2

y
Of

i

?
y

2

(B

)
fc

?
fl.

/
i/

?

3

!

G

X

&

o

k,
*

4

J9

JL

&

<L

I

t

5

e
m
u

t>
77V

Ui

6

y
n
V

/
n/

o-

7

A

(5

W

?
9-

ULh

Table 23: Symbols for font -syml

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

A

K

D

V

T

o

t
>i

u

1

=

()
A

A

A

0

O

3

s

1

2

0

t

i

0

4

4

9

O
Q
V

.

3

<?

A

\

*

T

i

.tit

O
0

B

1

4

0
r\

\

+

»

o

O
9

C

II

5

*

r\

X

*

C

D

r

®

#

u

6

*

o

A

*

t

$

o

oo

<f

*

II

7

*

~

V

t

a

o

t

T»

n

30 APPENDIX A STANDARD FONTS

Table 24: Symbols for font -tr

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

(

0

8

H

P

X

h

P
X

1

!

)
1

9

A

I

Q
Y

a

i

q
y

2

ii
*
2

:

B

J

R

Z

b

J
r

z

3

+

3

»

C

K

S

c

k

s

4

$

»

4

D

L

T

d

1

t

5

-

5
=

E

M

U

e

m

u

6

&

.

6

F

N

V

f

n

V

7

o

»

/
7

?

G

0

W

g
0

w

Table 25: Symbols for font -tri

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

r
0

8

H

P

X

h

P
X

1

/

;
1
9

A

I

Q

Y

a

i

g
y

2

u

*

2

:

B

J

R

Z

b

3
r

z

3

+

3

t

C

K

S

c

k

s

4

S
»

4

D

L

T

d

I

t

5

-

5
«

E

M

U

e

m

u

6

&

.

6

F

N

V

f
n

V

7

o

»

/
7
9

0

0

w

9
o

\u

31

Table 26: Symbols for typesetting font -nrR

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

®

ffl

(

0

8

@

H

P

X
i

h

P
X

1
-

©

n
i
)
i
9

A

I

Q
Y
a

i

q
y

2

3*

ii

*

2

:

B

J

R

Z

b

J
r

z

3

k

_

o

#
+
3
 i » <
C

K

S

[
c

k

s

1

4

1

ff

t

$

,

4

<

D

L

T

\

d

1

t

1

5

2

fi

%
-
5

=

E

M

U

]
e
m
u

J

6

fl

&

6

>

F

N

V
-

f

n
V

r>j

7

t

ffi

i

/

7
9

G

0

W

__._._

g
o

w

Table 27: Symbols for typesetting font -nrB

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\Hx

\15x

\16x

\17x

0

(

0

8

H

P

X
i

h

P
X

1
-

!

)
1

9

A

I

Q
Y
a

i

q
y

2

a

»

2

:

B

J

R

Z

b

J
r

z

3

+

3

i

C

K

S

c

k
s

4

$

»

4

D

L

T

d

1

t

5

-

5

=

E

M

U

e

m

u

6

&

6

F

N

V

f

n
V

7

t

/

7

?

G

0

W

g
0

w

32 APPENDIX A STANDARD FONTS

Table 28: Symbols for typesetting font -nrl

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

ffl

(

0

a

H

p
X

h

P
X

1
-

i

)
1

9

A

I

Q
Y

a

i

q
y

2

*
2

:

B

J

R

Z

b

3
r
z

3

_

3

i

C

K

S

c

h
s

4

ff

$

i

4

D

L

T

d

I

t

5

fl

-

5

E

M

U

e

m

u

6

fl

&

6

F

N

V

f
n
V

7

ffi

i

/

7
9

G
0

W

9
0

w

Table 29: Symbols for typesetting font -nrBI

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

(

0

8

H

P

X
t

h

P
X

1
-

/

;
/
9

A

I

Q
Y
a
i

q
y

2

*

2

B

J

R

Z

b

3
r

z

3

+

3

*
C

K

S

c

k

s

4

$

i

4

D

L

T

d

I

t

5

-

5
=

E

M

U

e

m

u

6

&

6

F

N

V

f
n

V

7

»

/

7

?

G

0

W

9
o

w

33

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

0

^

->

§

o

I
@
0
n
X

i?
7T

X

Table 30
1

_
oc

t

J

r
A

I

*

H

a

i

V
-n

: Symbol

2

X

<-
t

f
I
B

P

Z

0

P
<

s for type

3

X

c
4
>/
#
-f

I
1
H
K

£

[

£
/c
(7

i

netting f<

4

-=-

U

d
rvi

1

<

A

A

T

6

X

r

Dnt -nrS

5

^

^>

v
±

-

J
=

E

M

T

]
e

M
V

i

6

=

n

/
T

^
>
$
N

9
V

9

7

^

e
oo

i^

r
0

n

7
0

CJ

34 APPENDIX A STANDARD FONTS

35

Appendix B-UNIX Manual Style
Documentation
Because the UNIX manual style documentation must be
compatible with UNIX'S nroff(l) text preparation sys­
tem, the manual pages for software presented in this
report are prepared with the typesetting version troff
and attached to this appendix. Style and page number­
ing are necessarily different from the BTgX typesetting

style used in preparing this and previous pages. It is
recommended that the following pages be copied and
inserted in local user documentation manuals.

In providing supplementary documentation describ­
ing the characteristics of individual plotting devices the
author decided to place this material in "Chapter" 7
of the UNIX manual system. Only documentation for
those devices available to the local system should be
added to local manuals.

PLOTTER(l) USGS/OEMG Systems (11/30/90) PLOTTER(l)

NAME
plotter - plotting of metagraphic stream

SYNOPSIS
plotter [-diorspxyXYPD [args]] [file(s)]

DESCRIPTION
Plotter interprets a metagraphic stream and reformats the data into a form acceptable
by the selected graphics device.

Except for the -p and -x options the following command line control parameters can
appear in any order:

-d name
Name defines the name of the plotting device to which the output is to be
directed. If name is omitted, plotter acquires the name of the device from the
GTERM entry of the processes' environment or the TERM entry if GTERM
is not specified. If name or the default terminal is not an implemented device,
plotter proceeds with a dummy device and does not produce output.

-s scale
Scale must be a floating point value which will scale the coordinate values of
the input metagraphic stream.

-o output
This option directs the device dependent graphic control data to file output. If
not specified the data will be sent to the output file specified by the GRAPHS
environment option or to stdout if it is also not specified.

-i m.n
This option only applies to the interactive use of plotter by programs using a
bidirection link. It should not be employed by shell execution of plotter. M.n
are automatically generated by graphics library software. M is the file descrip­
tor for the input metagraphic data pipe to plotter and n is the file descriptor of
the return data pipe to the calling program.

-q
This option alerts interactive display drivers not to sound console bell and wait
for a <CR> at the end of a plot Its primary purpose is with cursor control ap­
plications which hold the screen with cursor input and where plot termination
is at user's cursor input control.

-r
If this option is selected, the x and y axis are reversed on the plotting device.

-[V\P]m:n[jn:n]
Mapping the mechanical pens selected in the original overlay files to new
mechanical pens may be performed by use of this option. The -p option is
sensitive to its position on the run line and only affects overlay files that fol­
low its specification. It may be employed on the run-line as often as meaning­
ful.

The argument pair mm (immediately following the -p or -P) consists of the
original mechanical pen number m and the new mechanical pen number n to
be employed in this plot. M may also denote a range of original mechanical
pen numbers when a - is employed. For example: 3-6:0 maps original values
3 through 6 to new pen 0, 0-3:5 or -3:5 maps pens 0 through 3 to new pen 5,
and 3-:2 maps pens 3 through 255 to pen 2.

Page 1 December 3, 1990

PLOTTER(l) USGS/OEMG Systems (11/30/90) PLOTTER(l)

The -P option applies the pen mapping to all input files and it may appear
anywhere on the runline.

-[X|Y|x|y]n
This option provides for shifting the overlay by n overlay coordinate units in
the x and/or y axis. The options -X and -Y define an offset for all overlays
while the -x and -y options create offsets relative to 0,0 or origin modified by
-XY only for the overlays that follow on the run-line.

Offset units depend upon application software generating the overlay files and
the units expected by the plot device. For hardcopy devices this is typically
200 counts/cm so that creating a 10 cm offset in the x axis would require a
value for n of 10x200 counts or -x2000.

-Dstring <
String is information passed to the selected device driver. Reference to
specific driver documentation must be made for details of content.

nie(s)
The files named contain metagraphic commands compatible with this system
(see Device Independent Vector Graphics manual). The files are processed in
a left to right order. A - may be used once to designate input from stdin. If
no files are given and option -i is not employed, stdin is assumed to be the
source of the metagraphic stream.

ENVIRONMENT
Plotter requires the environment entry GRAPHB which is also employed by applica­
tion software employing this graphics system. The general csh method of initializing
this environment parameter is:

setenv GRAPHB prog_jpath:fonts_path:def_font [:dev, file] :

where prog_path is the full path name of program plotter, fonts_path is the directory
containing the font definition data, and defjont is the default font name in fonts_path
employed when only a - font name is used. Devfile is an optional list of plotting dev­
ices and their output file name. Note that each plotter entry must be separated by a :
and associated file delimited with a ,. The following is an example entry:

setenv GRAPHB /graph/plotter:/graph/fonts/:sr:kong,/dev/ttym2

EXAMPLE
plotter filel file2 -s 4

will generate a composite plot of both files on the user's terminal and will have the
coordinates scaled by a factor of 4.

plotter filel -pl:0 file2 -s .25 -d calcomp -o caltemp

will scale the meta-graphic files by 1/4 and output the calcomp plotter control to the
disc file caltemp. The mechanical pen 1 of metagraphic file2 is mapped to pen 0;

SEE ALSO
Device Independent Vector Graphics manual.
Documentation of specific graphic devices.
GRAPfflCS(3)
device descriptions(7p)

December 3,1990 Page 2

PLOTTER(l) USGS/OEMG Systems (11/30/90) PLOTTER(l)

DIAGNOSTICS
If an invalid graphics device is selected, a message is output to stderr and all input data
are ignored. Additional error conditions are available only though bidirectional linkage
with controlling process.

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 3 December 3,1990

5?

SET970(1) USGS/OEMG Systems (2/20/89) SET970(1)

NAME
set970 - set performance factors for Calcomp 970

SYNOPSIS
set970 [n]

DESCRIPTION
Set970 sets the performance factors of the Calcomp 970 plotter. These factors consist
of pen acceleration, maximum speed and approximate creep speed. The optional
parameter n selects from the following table the range of factors selectable. If omitted,
a value of 34 is used and if n<0 then 0 and if n>47 then 47.

n Ace. Vm. Vc. I n Ace. Vrh. Vc. I n Ace. Vm. Vc.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

6
6
6
6
10
10
10
10
20
20
20
20
30
30
30
30

0.51
1.01
2.01
3.01
0.5
1.0
2.0
3.0
0.5
1.0
2.0
3.0
0.5
1.0
2.0
3.0

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

6
6
6
6
10
10
10
10
20
20
20
20
30
30
30
30

0.51
1.01
2.01
3.01
0.51
1.01
2.01
3.01
0.51
1.01
2.01
3.01
0.51
1.01
2.01
3.01

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

6
6
6
6
10
10
10
10
20
20
20
20
30
30
30
30

0.5
1.0
2.0
3.0
0.5
1.0
2.0
3.0
0.5
1.0
2.0
3.0
0.5
1.0
2.0
3.0

Output of the control stream is the standard output.

NOTE: the AUX switch on the 970 must be enabled for this operation to have any ef­
fect.

EXAMPLE
(set970 10 ; plotter ...) > /dev/ttyo4

sets performance factor to number 10 prior to execution of plotter.
DIAGNOSTICS

None.

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

'
O

SYMGEN(l) USGS/OEMG Systems (11/30/90) SYMGEN(l)

NAME
symgen - generate symbol tables for program plotter

SYNOPSIS
symgen font_def font_file descriptor_file[s]

DESCRIPTION
Program symgen reformats vector information for drafting characters into a binary file
structure, fontjile for use by the graphics driver program plotter. The file fontjief
contains a definition of the mapping of the ascii character set values and the symbol
identifier numbers in the descriptor Jile.

The first line of the fontjief file must cpntaining two numeric values: the height of the
character set's upper case letters followed by the y axis offset of the character's origin
from the character base line. If a non-zero y-offset value is employed, the origin of the
characters is shifted from the normal central position to the lower left hand corner.
This latter feature is useful when the symbol set is to be used in typesetting applica­
tions.

The remaining lines of the fontjief file contain either an ascii symbol or two digit
numeric value of the symbol followed by the symbol number in the descriptor Jile.

The descriptor Jile is a compressed version (all unneccessary blanks removed) of the
Hershey symbol tables. A line starting with a number is the beginning of a symbol
vector definition and the number is the symbol number referenced in the fontjief file.
Entries must be in ascending symbol number order and a line beginning with a : is a
continuation of the previous line. The pair of values immediately following the symbol
number (subsequent pairs delimited by colons) indicate the extent of the symbol to the
left and right of the symbol's center. The remaining symbol pairs are either x-y coor­
dinates drafting the symbol or pen control. Special coordinates 128 0 and 129 0
represent respective pen-up motion to the next value and end of symbol definition (note
that the original Hershey usage employed -64 0 and -64 -64 respectively). Pen-up to
the first coordinate is always implied.

There may be more than one descriptor Jile as long as the ascending sequence of the
symbol numbers is preserved. This allows local expansion of symbols without modify­
ing the original Hershey definitions. If the descriptor Jile is omitted or a - is used then
stdin is assumed.

Special note: the y coordinates of the original Hershey table are positive downward.
The current version of symgen reverses this sign convention internally.

EXAMPLE
A sample execution for generating a standard font selection for the program plotter is:

symgen fonts/basic-fonts/sr.D sr fonts/H????.tab

where the partial contents of fonts/basic-fonts/sr.D appear as:

21 0 simplex roman, size 21 units
01 899 ascii 0 cannot be used
02 900

31 718 degree
32 698 space
! 714

0 700 numbers

Page 1 December 3,1990

SYMGEN(l) USGS/OEMG Systems (11/30/90) SYMGEN(l)

1 701

A 501 upper case letters
B 502
etc.

As demonstrated, comments can follow the second numeric entry.

FILES
HOOOO.tab standard Hershey symbol set

H4000.tab expansion symbols referenced on pages 24 and 25 of NBS 424.

By using the Hxxxx.tab nomenclature with the xxxx representing the first symbol
number of the file, wild card expansion (i.e. H????.tab) on the runline will ensure prop­
er loading of multiple descriptor files.

SEE ALSO
Device Independent Vector Graphics manual.
NBS Special Publication 424, Hershey symbol tables.
Font definition files and Hershey symbol table files in directory fonts.

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

December 3,1990 Page 2

PLOTTER(S) USGS (9/25/90) PLOTTER(S)

NAME
plotopen, plotend, defopen, defclose, pltflush, pxyxmit, plotopt, plotreq - graphics con­
trol

SYNOPSIS
#include <graphics.h>

plotopen(argl)
char *argl[3+];

plotendQ;

defopen(name);
char *name; -

defcloseQ;

pltflushQ;

pxyxmit(cmd, x, y);
int cmd;
long x, y;

plotopt(cmd, [optval])
int cmd;
[(long I char *) optval;]

ANSWR *plotreq(cmd);
int cmd;

DESCRIPTION
The information presented here is only a brief synopsis and syntax of entry points of
the device independent graphics system.

Plotopen and/or defopen are necessary to initialize the graphics system. Plotopen es­
tablishes a bidirectional link with program plotter for direct output of graphics to a
particular device. Note that the first and second pointers in the list argl are ignored
and the last element must be a null pointer (0). When interactively linking to plotter
one adjacent pair of the arguments must contain '"-i"/'."' which will indicate the point
of pipe linkage with plotter. Other arguments may contain other arguments associated
with plotter execution. If plotopen is employed interactively the graphics operations
should be terminated by a call to plotend.

Defopen establishes an output file which collects all meta-graphics generated by subse­
quent graphic calls. Defclose terminates output of data to the file established by de­
fopen.

Note that both plotend and plotclose will flush current contents of output buffers.

Pxyxmit transmits pen x and y coordinates to the meta-graphic stream. Principally cmd
is used to designate the status of the "pen" during motion from the last position to the
current coordinates. It also may indicate that the current values of x and y are relative
to a previous absolute position.

Page 1 December 3, 1990

PLOTTER(3) USGS (9/25/90) PLOTTER(3)

Plotopt entry is used to transmit a wide variety of options, attributes and control to the
meta-graphic stream.

If the process has been linked to plotter via a plotopen call, status, cursor position as
well as other information can be retrieved with execution of plotreq. The results of the
inquiry are returned as elements of the structure pointed to by plotreq.

LIBRARY
graphics.h
grerror.h
libgraph.a

SEE ALSO
Device Independent Vector Graphics manual is required reading for a complete descrip­
tion of the graphics options and usage.

PLOTTER(l).

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

December 3,1990 Page 2

C5800(7P) USGS (11/30/90) C5800(7P)

NAME
c5800 - Calcomp electrostatic color external device driver for program plotter

SYNOPSIS
plotter -d c5800 ...

DESCRIPTION
This device driver produces output for external driver linking to Calcomp 5800 subrou­
tine library.

The following -D plotter command line control parameter can appear in any position
on the runline:

-DRjc.y
The values of x and y are substituted for the respective maximum size of the
plotter.

SIZE AND RESOLUTION
Maximum x and y axis sizes are respectively 65535 and 22350 or 327x1 llcm with a
resolution of 200 counts/cm.

SPECIAL STRING OPERATIONS
None.

MECHANICAL PENS
Mechanical pen numbers 0-1023 select Calcomp 5800 pen numbers 1-1024.

NOTE
Requires program c5800 in same directory as program plotter.

SEE ALSO
Device Independent Vector Graphics manual.
Calcomp technical manuals.
plotter(l)

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

Ji/

C970(7P) USGS (11/30/90) C970(7P)

NAME
c970 - Calcomp 970 belt-bed plotter

SYNOPSIS
plotter -d c970 ...

DESCRIPTION
The Calcomp 970 is a mechanical pen, belt-bed plotter.

There are no -D options associated with this plotter.

SIZE AND RESOLUTION
Maximum x and y axis sizes are respectively 40000 and 26040 (200xl30cm) with a
resolution of 200 counts/cm.

SPECIAL STRING OPERATIONS
None.

MECHANICAL PENS
Mechanical pens numbers 0-3 select mechanical pens 1-4. Pen types, widths, etc.
determined by operator.

NOTES
Some performance characteristics can be controlled by program set970 before running
plot.

SEE ALSO
Device Independent Vector Graphics manual.
set970(l)
plotter(l)

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

DEBUG(7P) USGS (11/30/90) DEBUG(TP)

NAME
debug - internal debugging driver
exdebug - external debugging driver

SYNOPSIS
plotter -d debug ...
plotter -d exdebug ...

DESCRIPTION
These drivers produce ASCII text interpretation of the drafting information passed to
the drivers and are used for testing and debugging applications.

For exdebug the following -D plotter command line control parameter can appear in
any order

-DRx.y
The values of x and y are substituted for the respective maximum size of the
plotter.

Debug accepts and lists any -D options.

SIZE AND RESOLUTION
Debug has maximum range of 3000x2000 and exdebug has a range of 15000x10000.
Resolution not applicable.

NOTE
Exdebug requires program extdebug in same directory as program plotter.

SEE ALSO
Device Independent Vector Graphics manual,
plotter(l)

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

GERBER(7P) USGS (11/8/90) GERBER(TP)

NAME
gerber - Gerber photo-head plotter

SYNOPSIS
plotter -d gerber ...
plotter -d gerbers ...

DESCRIPTION
The Gerber is a high resolution photohead plotter designed to produce negatives for
publication processes. Output should always be to a 9-track, 1600bpi magnetic tape
drive. Dependent upon magnetic tape drive, gerbers may be required to swab or inter­
change output byte but this is becoming rare. The output of mis driver is also used
with the Scitex system.

i
There are no -Dx options for this device.

SIZE AND RESOLUTION
Maximum x and y axis sizes are respectively 24000 and 32000 (120xl60cm) with a
resolution of 200 counts/cm.

SPECIAL STRING OPERATIONS
None.

MECHANICAL PENS
Mechanical Line width
pen no. (inches)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.002
.003
.004
.005
.006
.007
.008
.009
.010
.012
.014
.015
.025
.050

SEE ALSO
Device Independent Vector Graphics manual,
plotter(l)

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

KONG(7P) USGS (11/8/90) KONG(TP)

NAME
kong - Kongsberg photo-head plotter

SYNOPSIS
plotter -d kong ...
plotter -d skong ...

DESCRIPTION
The Kongberg is a high resolution photohead plotter designed to produce negatives for
publication processes. Output should always be to a 9-track, 1600bpi magnetic tape
drive. Dependent upon magnetic tape drive, skong may be required to swab or inter­
change output byte but this is becoming rare.

There are no -Dx options for this device.,

SIZE AND RESOLUTION
Maximum x and y axis sizes are respectively 24000 and 32000 (120xl60cm) with a
resolution of 200 counts/cm.

SPECIAL STRING OPERATIONS
None.

MECHANICAL PENS
Spot size Mechanical
in microns pen no.

2 0
3 1
4 2
5 3
6 4
7 5
9 6

10 7
14 8
15 9
21 10
30 11
45 12
60 13
90 14
135 15

SEE ALSO
Device Independent Vector Graphics manual,
plotter(l)

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

PS(7P) USGS (11/30/90) PS(7P)

NAME
ps - PostScript internal device driver for program plotter

SYNOPSIS
plotter -d ps ...

DESCRIPTION
This device driver produces output compatible with Adobe's PostScript display
language.

The following -D plotter command line control parameters can appear in any order.
-Dx

Suppress PostScript showpage at end of plot. This allows concatenation of
output to create composite plot. >

-Dt
Suppress PostScript initialization string and showpage. This option should be
employed when output is employed with programs that convert TeX dvi files
to PostScript programs. See note below.

-Dox.y
Identical to plotter -XY command and may be discontinued.

SIZE AND RESOLUTION
Maximum x and y axis sizes are respectively 5588 and 4318 (11.5x8 inches) with a
resolution of 200 counts/cm.

SPECIAL STRING OPERATIONS
None.

MECHANICAL PENS
Eight pen widths may be selected by mechanical pen numbers 0-7 that are respective­
ly: 1, 5, 10, 15, 20, 30, 40 and 50 points (1/72.27 inch) wide. By adding 8, 16 and 24
to the pen number the lines are respectively drafted with setgray levels of .25, .5 and
.75.

NOTES
The following initialization operations must precede driver output if the -Dt option is
employed:

/L { {rlineto} repeat currentpoint stroke moveto} bind def
/U { moveto } bind def
1 setlinecap
1 setlinejoin

SEE ALSO
Device Independent Vector Graphics manual,
plotter(l)

DIAGNOSTICS
Invalid -D option will quietly cause initialization failure.

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3,1990

RANGER(7P) USGS (11/8/90) RANGER(TP)

NAME
ranger - driver to determine x-y range of metagraphic data

SYNOPSIS
plotter -d ranger ...

DESCRIPTION
The purpose of this driver is to determine the range of x-y coordinates in one or more
metagraphic files and print the results as minimum x, maximum x, minimum y and
maximum y on the output.

There are no -D plotter command line control parameters.

SIZE AND RESOLUTION
Maximum x and y axis sizes are respectively 100000 and 100000 (500m for 200
count/cm resolution).

SEE ALSO
Device Independent Vector Graphics manual.
plotter(1)

AUTHOR/MAINTENANCE
Gerald I. Evenden, USGS, Woods Hole, MA 02543

Page 1 December 3, 1990

